Elkacem Echobi

mathematiques

Durge 2 heures

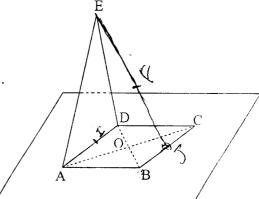
Exercice n°1 (1.5 Points)

A) Répondre par vrai ou faux. Aucune justification n'est demandée :

Dans l'espace, si P est le plan médiateur de [AB], I=A*B et E∈ P,

donc (IE) est une médiatrice de [AB]

- B) Choisir la réponse correcte :
- 1) D, D'et \triangle sont 3 droites de l'espace .Si $\triangle \perp D$ et $\triangle \perp D$ 'donc :
 - a) $D \parallel D'$
- **b)** D ±D'
- c) On ne peut rien affirmer..
- 2) \mathscr{E}_{i} est une hyperbole de centre S(3.2) ,donc
 - a) $D_f = \mathbb{R}$


- **b)** $D_f = \mathbb{R} \setminus \{3\}$ **c)** $D_f = \mathbb{R} \setminus \{2\}$

Exercice n°2 (6.5 Points)

ABCD est un carré de centre O tel que AB=6. ADE est un triangle équilatéral situé dans un plan perpendiculaire à (ABCD).

On désigne par I=A*D

- 1) a) Montrer que $(OI) \perp (ADE)$.
 - **b)** Montrer que (OIE) est le plan médiateur de [AD].
 - c) Montrer que (AD) et (EO) sont orthogonales
- 2) (Montrer que (EIO) $\perp (ABCD)$.
- 3) a) Montrer que(EI) \perp (ABCD).
 - b) en déduire la nature de EIB.
 - c) Calculer EI, IB puis EB.
- 4) soit J=B*C et F=E*J
 - **a)** Montrer que $(OF) \parallel (IE)$.
 - b) En déduire que (OF) est l'axe du cercle circonscrit au carré ABCD.

مكتبة 18 جانفي عمارة الرحمة (خلف نزل الأندلس - صفاقس - الهاتف: 485 22 740 22

Exercice n°3 (7.5 Points)

Soit fune fonction définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{2x}{x+1}$

- 1) a) Montrer que pour tout $x \in \mathbb{R} \setminus \{-1\}$, $f(x) = 2 \frac{2}{x+1}$
- b) Construire Cf la courbe de f dans un repère orthonormé et préciser le centre et les asymptotes
- 2) Soit la droite Δ : x+y-2=0.Déterminer graphiquement les coordonnées de K et L les points d'intersection de \triangle et Cf.
- 3) a) Construire dans le même repère la parabole : $P: y = -(x+1)^2 + 5$
 - **b)** Vérifier par le calcul que K et L sont les points d'intersection de P et Δ .
- 4) Résoudre graphiquement :

$$\mathbf{a)} \quad \frac{2x}{x+1} \le -x + 2$$

a)
$$\frac{2x}{x+1} \le -x+2$$
 ; b) $-(x+1)^2 + 5 \le -x+2 \le \frac{2x}{x+1}$

- **5)** Soit $g(x) = \frac{2x}{1-|x|}$.
 - a) Déterminer Dg.
 - **b)** Montrer que g est impaire.
 - c) Déduire Cg à partir de Cf.

Exercice n°4 (4.5 Points)

Le plan est muni d'un repère orthonormé. Soient $I\left(-\frac{1}{2},0\right)$ et A(1,2).

1) Soit
$$f(x) = \sqrt{x+3}$$
. Construire \mathcal{C}_f .

- 2) Soit \mathscr{C} le cercle de centre \overline{I} et de rayon $\frac{5}{2}$.
 - a) Ecrire l'équation cartésienne de C.
 - **b)** Montrer que $A \in \mathcal{C}$ puis construire \mathcal{C} .
- 3) Ecrire l'équation réduite de Δ la tangente à $\operatorname{\mathscr{C}}$ en A puis construire Δ .
- 4) Résoudre graphiquement $f(x) \le -\frac{3}{4}x + \frac{11}{4}$
- 5) Calculer les coordonnées des points d'intersection de $\operatorname{\mathfrak{C}et} \operatorname{\mathfrak{C}}_f$.